Dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms.
نویسندگان
چکیده
Microalgal biofilms grown to evaluate potential nutrient removal options for wastewaters and feedstock for biofuels production were studied to determine the influence of bicarbonate amendment on their growth, nutrient uptake capacity, and lipid accumulation after nitrogen starvation. No significant differences in growth rates, nutrient removal, or lipid accumulation were observed in the algal biofilms with or without bicarbonate amendment. The biofilms possibly did not experience carbon-limited conditions because of the large reservoir of dissolved inorganic carbon in the medium. However, an increase in photosynthetic rates was observed in algal biofilms amended with bicarbonate. The influence of bicarbonate on photosynthetic and respiration rates was especially noticeable in biofilms that experienced nitrogen stress. Medium nitrogen depletion was not a suitable stimulant for lipid production in the algal biofilms and as such, focus should be directed toward optimizing growth and biomass productivities to compensate for the low lipid yields and increase nutrient uptake.
منابع مشابه
Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production
BACKGROUND The microalgal-based industries are facing a number of important challenges that in turn affect their economic viability. Arguably the most important of these are associated with the high costs of harvesting and dewatering of the microalgal cells, the costs and sustainability of nutrient supplies and costly methods for large scale oil extraction. Existing harvesting technologies, whi...
متن کاملDirect measurement and characterization of active photosynthesis zones inside wastewater remediating and biofuel producing microalgal biofilms.
Microalgal biofilm based technologies are of keen interest due to their high biomass concentrations and ability to utilize light and CO2. While photoautotrophic biofilms have long been used for wastewater remediation, biofuel production represents a relatively new and under-represented focus area. However, the direct measurement and characterization of fundamental parameters required for indust...
متن کاملUtilization of lipid extracted algal biomass and sugar factory wastewater for algal growth and lipid enhancement of Ettlia sp.
The present study assessed the use of hydrolysate of lipid extracted algal biomass (LEA) combined with the sugar factory wastewater (SFW) as a low cost nutrient and a carbon source, respectively for microalgal cultivation. Microalgal strain Ettlia sp. was both mixotrophically and heterotrophically cultivated using various amounts of hydrolysate and SFW. The culture which was grown in medium con...
متن کاملStrategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock
In response to the energy crisis, global warming, and climate changes, microalgae have received a great deal of attention as a biofuel feedstock. Due to a high lipid content in microalgal cells, microalgae present as a promising alternative source for the production of biodiesel. Environmental and culturing condition variations can alter lipid production as well as chemical compositions of micr...
متن کاملCo-Cultivation of Fungal and Microalgal Cells as an Efficient System for Harvesting Microalgal Cells, Lipid Production and Wastewater Treatment
The challenges which the large scale microalgal industry is facing are associated with the high cost of key operations such as harvesting, nutrient supply and oil extraction. The high-energy input for harvesting makes current commercial microalgal biodiesel production economically unfeasible and can account for up to 50% of the total cost of biofuel production. Co-cultivation of fungal and micr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioresource technology
دوره 180 شماره
صفحات -
تاریخ انتشار 2015